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a b s t r a c t

Long before the mathematical developments that led inexorably to the development of systems
factorial technology, the somewhat arduous, but arguably requisite labors which precisely defined
parallel and serial architectures had begun (e.g., Townsend, 1969, 1972). Both then and now, what are
now referred to as standard serial models and standard parallel models not only play an important role
in psychological science, they are often what non-mathematical psychologists are (sometimes in an
unschooled fashion) referring to when they bring up architectural concepts. Interestingly, two strategic
and critical properties, and therefore implicit predictions of the canonical serial and parallel models
have witnessed little analysis. In this article, we address three issues: (1) Standard parallel models
predict stochastically independent processing times and therefore total completion times. There is a
partially valid intuition that standard serial models will predict positive dependence among totally
completion times and standard serial models based on exponential processing time do predict this
(Townsend and Ashby, 1983, p. 73). This also holds if only one order of processing is possible. However,
if there is a mixture of processing orders, certain distributions can predict negative dependencies on
this statistic. (2) Analogously, standard serial models predict independent and identically distributed
processing times and therefore intercompletion times. Certain examples of standard parallel models
(again, based on exponential processing times) suggest that the intercompletion times tend to increase
over time and stages although there has been no information on their interdependence. Interestingly,
we again find that there is an inclination for standard parallel models to emulate this behavior but
that this tendency can be over-ridden by dramatically increasing parallel-channel hazard functions.
(3) Are there psychological questions that pertain to these distinctions and are there any experiments
that have emerged to assess the latter? With regard to experimental data on these issues, it turns
out that there exists some data from categorical free recall that bear on some of the behavior
of intercompletion times, which we discuss. To date, we know of no investigations that explore
correlations of total completion times, although such analyses appear relatively straightforward.
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1. Introduction

An immense number of psychological tasks involve mental
operations on various types of perceptual, cognitive, or action
entities. Thus, questions concerning whether these operations
occur in parallel (i.e., simultaneously), in serial (i.e., one at a time)
or in some more complex fashion arise. Though reaching back
to antiquity, the cognitive revolution beginning in the 1950s and
1960s brought renewed interest in such questions (e.g., Atkinson,
Holmgren, & Juola, 1969; Egeth, 1966; Estes & Taylor, 1964;
Murdock, 1971; Sperling, 1960; Sternberg, 1966).

Before beginning our technical foray, we observe that we
often refer either to parallel vs. serial systems or parallel vs.
serial models, which of course, are the mathematical descriptions
of the material objects. Our concentration will be on response
times (hereafter RTs) since that is the observable variable most
frequently brought to bear on this and similar issues.

The third author’s formulations, starting in the late 1960s, pro-
vided rigorous definitions of serial and parallel systems and re-
lated topics, which keyed into their most central aspects
(e.g., Townsend, 1969, 1972, 1974). The serial and parallel models
employed at the time in the literature tended to be not only much
narrower but often defined only verbally. The rough idea of serial
systems was that items would be processed in sequence and in an
independent and identical-distribution, fashion. For parallel sys-
tems, all items would begin processing simultaneously and that
they would be processed independently. Most often, in parallel
models, it was also assumed that each item would be processed
equally efficiently, no matter how many other processes were
going on in parallel. This latter notion pertains to the concept
of capacity (e.g., Townsend, 1971; Townsend & Ashby, 1978).
However, we shall not be focusing on this latter assumption in
this investigation, although certain statements may occasionally
link up with this concept.

In our more rigorous taxonomy, these special, but important,
classes of serial or parallel are now referred to as standard serial
and standard parallel models. The current study focuses on these
two strategic classes of models. They represent the prototypical
types of serial and parallel models and were, and still are, incor-
rectly in our view, often depicted as the only members of their
respective classes.

One of the theoretical challenges then and now, was that
experimenters often used their data to infer one or other of
the general classes of models, when in actuality, they were only
testing restricted subclasses. For instance, increasing linear mean
RT functions of number of items processed was taken, and still
is in some quarters, as implying serial processing and excluding
all parallel models. In point of fact, only special serial models
make this prediction such as standard serial models. And, there
exist intuitive parallel models that readily make this predic-
tion (e.g., Townsend, 1972, 1974), in particular those suffering
from limited capacity (e.g., Townsend, 1974; Townsend & Wenger,
2004).

There are now hundreds of experimental and theoretical works
on the serial and parallel question (for recent reviews, e.g., Al-
gom, Eidels, Hawkins, Jefferson, & Townsend, 2015; Townsend
& Wenger, 2004; Townsend, Wenger, & Houpt, 2018; Townsend,

Yang, & Burns, 2011). The rigorous theoretical scaffolding con-
structed by Townsend and colleagues led not only to understand-
ing of where such issues of parallel vs. serial processing cannot
be experimentally adjudicated, but also, more happily, to quite
powerful theory-driven methodologies for testing the two types
of process arrangements (e.g., Townsend, 1972, 1974; Townsend
& Ashby, 1983; Townsend & Nozawa, 1995). Among the most
powerful approaches is the topic of this volume, Systems Factorial
Technology (SFT; see especially Little, Altieri, Fific, & Yang, 2017).
Although the present article does not specifically appeal to SFT, it
certainly lies squarely in its tradition, which began back in the
1960s with the aforementioned rigorous taxonomy of process
models and scrupulous exploration of parallel and serial systems’
properties. It is true that dependencies among subsystems (de-
fined as ‘‘processors’’ below) can be deleterious to the workings
of SFT. That is, inter-channel processor dependencies can interfere
with the critical assumption of ‘‘selective influence’’ (Townsend,
1984). This type of perturbation is known as ‘‘indirect non-
selective influence’’. Progress on such contamination has been
made by Townsend and Thomas (1994), Townsend and Ashby
(1983, Chapter 12) and Dzhafarov (1999). There are still impor-
tant unanswered questions in that direction, but these lie outside
the scope of our present enterprise. Theoretical methodologies
closely related to SFT include many works by Schweickert, Dzha-
farov and colleagues (see e.g., Schweickert, Fisher, & Sung, 2012,
for a broad-spectrum review and discussion). Other important
approaches to questions of mental architecture are Anderson
(2013) and Newell (1994).

1.1. Definitions of serial and parallel models

We need to recall the rigorous definitions of serial vs. par-
allel models. Our strategy obeys the precept employed in our
first rigorous analyses of information processing systems, that of
representing architecture and stopping rules by way of the fun-
damental building-bricks called ‘‘intercompletion times’’. These
will be precisely defined in what follows. The arrangement and
relative speeds describing intercompletion times can handle al-
most any issues concerning the characteristics of information
processing including the more complex architectures known as
PERT networks (e.g., Schweickert, 1978; Schweickert et al., 2012).

The serial models assume all the processes are executed in an
end-to-end manner (Fig. 1(a)). If n processes are in the model,
there are n! ways to arrange the order of them. The parallel mod-
els assume that every process starts simultaneously (Fig. 1(b))
but they can terminate at different moments. There are also,
like the serial case, n! ways to terminate the n processes in the
parallel models. For informal discussion the term channel, instead
of process, will sometimes be associated with parallel systems and
models. However, the reader should refer to the more precise
mathematical definitions and developments if our meaning is
ever unclear.

In this article, we distinguish between the terms processor j
and the jth order of processor. The ‘‘j’’ in the term ‘‘processor
j’’ represents the name or identity of a subsystem process in
operation whereas ‘‘jth order of processor’’ refers to the position
in the processing order of a processor. Furthermore, we refer to
the processing time as the actual time to execute a processor,
which will, of course be distinct for serial and parallel processors.
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Fig. 1. Graphical representations of (a) a serial model and (b) a parallel model.

For brevity, the term ‘‘process’’ is employed in our figures but
the reader should always think of each process in a figure as
identifying a specific processor.

Thus, the variable zj denotes the true processing time for item
associated with processor j, where j = 1, . . . , n. The ‘‘j’’ in the
term ‘‘the jth order of processor’’ indicates that there are j − 1
processors that have finished before that processor. In Fig. 1, for
simplicity processor j and the jth order of processor are the same.
But please keep in mind, processor j might be the ith order of
processor, where i ̸= j. Thus, in Fig. 1 processor 1 might finish as
the ith (i = 1, 2, . . ., n − 1, n), whether in a serial or a parallel
system.

Stage. Stage j spans the interval from the moment the (j−1)th
processor to be completed to the moment the jth processor to
finish is complete. Sometimes, the term ‘‘stage’’ is used only
in serial models, but we also employ it to act as this kind of
descriptive statistic.

Nonetheless, for serial models, the duration of stage j is iden-
tical to the duration of the jth intercompletion time. In Fig. 1(a),
processor 1 occupies stage 1, processor 2 occupies stage 2,. . . , and
processor n is functioning (only) during stage n.

In contrast, for parallel models, a processor will, except for
stage 1, includes several stages. For instance, processor 2 in
Fig. 1(b) includes stage 1 and stage 2 and processor n includes
stage 1, stage 2, to stage n.

Intercompletion time. As intimated above, the intercomple-
tion time Tj (also named the jth intercompletion time or jth ICT)
is the time random variable that is spent for stage j whether serial
or parallel. Again, for the serial models, each processing time is
an ICT: In Fig. 1(a),

T1 = z1, T2 = z2 . . . Tn = zn.

In contrast, the ICT is only part of a processing time for the
parallel models for all but the very first stage: In Fig. 1(b),

T1 = z1, T2 = z2 − z1 . . . Tn = zn − zn−1.

Total completion time for a processor. The total completion
time Tj (TCT) is the time that is consumed from the onset of
processing by the system, to the moment that processor j is
complete. For the serial model in Fig. 1(a),

T1 = z1,T2 = z1 + z2, . . . ,Tn = z1 + z2 + · · · + zn.

But, for the parallel model in Fig. 1(b),

T1 = z1,T2 = z2, . . . ,Tn = zn.

To sum up so far, zi will be a TCT in a parallel system but an ICT
in a serial system. Tj can also be written as the sum of ICTs up to
processor j.

Total completion time for a stage. The TCT Sj is the time that
is consumed from the onset of the system, to the moment that
stage j is complete. Sj can also be written as the sum of ICTs up
to stage j.

We summarize relationships between TCT for a stage Sj, TCT
for a processor Tj, ICT Tj and processing time zj as following. For
the serial model in Fig. 1(a),

S1 = T1 = T1 = z1,
S2 = T2 = T1 + T2 = z1 + z2,
. . .

Sn = Tn = T1 + T2 + · · · + Tn = z1 + z2 + · · · + zn.

For the parallel model in Fig. 1(b),

S1 = T1 = T1 = z1,
S2 = T2 = T1 + T2 = z2,
. . .

Sn = Tn = T1 + T2 + · · · + Tn = zn.

Again, to be sure we’re all on the same page, note that the
intercompletion time Tj and the total completion time for a stage
Sj are defined with respect to the stage in the processing order,
whereas the total completion time for a processor Tj is defined
with respect to the identity of a processor. And, again in this
article, we frequently refer the term processing time (the same
as the ‘‘actual processing time’’ in Townsend & Ashby, 1983) the
actual time to execute a processor. To stamp in this concept, for
a serial model, processing time is equivalent to intercompletion
time. For a parallel model, processing time is equivalent to total
completion time.

1.2. The mathematical representations of serial and parallel models

Both serial models and parallel models can be represented
mathematically. With the foregoing definitions in hand, we shall
forthwith employ ICT to designate intercompletion time and TCT
to refer to total completion times.

By a natural convention, usually a serial model is associated
with ICTs and a parallel model with TCTs, although a serial model
could be defined in terms of TCTs and a parallel model could
be defined in terms of ICTs (for theoretical purposes, it is often
desirable to express both classes in terms of ICTs as in Townsend
& Ashby, 1983).

A serial model can be written as the product of the probabil-
ity of a certain serial order of processing and the joint density
function of ICTs conditioned on that order.

P (I) fs (T1 = t1, . . . , Tn = tn|I = (i1, . . . , in)) .

t1, . . . , tn are realizations of T1, . . . , Tn, (i1, . . . , in) ∈ Perm(n),
where Perm(n) is the set of all permutations of the naturals from
1 to n, and P(I) is the probability of a particular permutation
I = (i1, . . . , in). For serial models, permutation I means that the
model starts with processor i1 and is connected to the onset of
processor i2 after processor i1 is complete, and so on. In contrast,
parallel models can be most naturally written as the joint density
function of TCTs of processors:

fp (T1 = τ1, . . . ,Tn = τn; I) ,

where τ1, . . . , τn are realizations of T1, . . . ,Tn. For parallel mod-
els, permutation I means that all the processors start simultane-
ously but processor i1 terminates first, processor i2 terminates
second, and so on.
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1.3. Differentiation of the serial and parallel models

Without imposing additional assumptions, serial models and
parallel models can perfectly mimic each other in many experi-
mental situations. Then, the experimenter finds it impossible to
tell them apart (e.g., Townsend & Ashby, 1983, Chapter 14; Houpt,
Townsend, & Jefferson, 2017). In order to overcome this problem,
several candidate assumptions were raised by scientists.

Selective influence (Sternberg, 1969) is the most widely used
one. It states that manipulation of each factor only influences the
processor that is associated with that factor. In serial models, the
outcome is that mean RTs can be shown to be additive functions
of the set of factors. Observe that this statement holds even if
the serial model falls outside the class of standard serial models.
Over the years, the assumption of selective influence was general-
ized and refined by Townsend and others (e.g., Dzhafarov, 2003;
Schweickert & Townsend, 1989; Townsend, 1984; Townsend &
Schweickert, 1989; Townsend & Thomas, 1994).

In fact, SFT (Townsend & Nozawa, 1995) was developed to
differentiate parallel models from serial models based on that
assumption. One can diagnose the nature of the process arrange-
ments according to the sign of the mean interaction contrast of
RTs (e.g., Schweickert, 1978; Sternberg, 1969; Townsend, 1984;
Townsend & Schweickert, 1985).

Moreover, much more precise assays were made possible by
the extension of contrast functions to survival functions of RTs
(Townsend & Nozawa, 1995). SFT has been applied and extended
and further explored by a plethora of researchers (e.g., Dzha-
farov, Schweickert, & Sung, 2004; Little et al., 2017; Schweickert,
Giorgini, & Dzhafarov, 2000; Yang, Fific, & Townsend, 2013; Zhang
& Dzhafarov, 2015).

One limitation of SFT is that it requires application in a com-
plete factorial design, in which each factor has at least two levels
(low salience vs. high salience that result in long processing time
vs. short processing time). Not every feature or dimension of
interest can fulfill this requirement. For instance, the processing
time of red color may be neither faster nor slower than green.

Another candidate assumption is that of within stage inde-
pendence, which states that unfinished parallel processors are
independently executed within each stage. Since there is only one
processor in each stage in a serial model, this assumption is only
applicable in the class of parallel models. Although within stage
independence is an important characteristic to know about, it
turns out that within stage dependent models can be mathemat-
ically transformed to within stage independent models (e.g., see
Rao, 1992, pp. 162–163). Thus, within stage independent parallel
models and within stage dependent parallel models cannot be
discriminated in the absence of direct observability of the within
stage dependencies. The next paragraph is critical to understand-
ing the remainder of our developments and is thereby italicized
though it includes concepts already introduced.

In this article, the axioms concerning processing time indepen-
dence are absolutely central. Recall that processing time is defined as
the actual time to execute a processor. For the serial models, this as-
sumption is equivalent ICT independence since the actual processing
times are equivalent to the ICTs. In contrast, for the parallel models,
processing time of an item or channel is equivalent to the time spent
from the very initiation of the model until an individual channel is
finished. As introduced earlier, this is a statistic known generically as
the TCT for a processor. Independence of processing times in parallel
models is tantamount to independence of the TCTs for individual
processors. In addition, we assume each processing time is identically
distributed. By assuming independently and identically distributed
(i.i.d) processing times, serial models and parallel models are termed
standard serial models and standard parallel models, respectively
(e.g., Algom et al., 2015; Townsend et al., 2018).

In order to investigate the complete dependency structures,
we must consider the joint distribution of all component ICTs
(TCTs, etc.). This is tantamount to assuming exhaustive processing
but that is a simple accident of our need for the overall joint dis-
tributions rather than a wish to focus on that particular stopping
rule.

1.4. The serial and parallel models’ account of free recall data

Many experimental paradigms are traditionally used to sys-
tematically study the serial–parallel issue. Free recall is one of
them, though far from the most popular. In this paradigm, sub-
jects are instructed to recall words that belong to a semantic
category from their long-term memory (Bousfield & Sedgewick,
1944; Bousfield, Sedgewick, & Cohen, 1954), for instance, nam-
ing as many cities in the United States as they could remem-
ber. The words are reported successively. It is found that the
time interval between two successive responses, that is the ICT,
increases as more responses are generated (Lohnas, Polyn, &
Kahana, 2011; Murdock & Okada, 1970; Patterson, Meltzer, &
Mandler, 1971; Pollio, Kasschau, & DeNise, 1968; Pollio, Richards,
& Lucas, 1969; Polyn, Norman, & Kahana, 2009; Sederberg et al.,
2006; Sederberg, Miller, Howard, & Kahana, 2010).

Various serial and parallel models have been proposed to in-
terpret the behavior of the data that is observed in this paradigm.
Here we introduce several important ones. McGill contributed
an influential chapter on stochastic processes in psychology, to
the 1963 Volume 1 of the Handbook of Mathematical Psychology
(McGill, 1963). He accounted for the general temporal charac-
teristics of Bousfield and Sedgewick’s (1944) data based on a
serial model. His model assumes that only one item could be
sampled from a search set and inspected at any time. All the
relevant items are assumed to be chosen with the equal chance
at each draw. After each draw, the subject examines if the item
is a member of the specified category and if the item is not
recalled yet. The amount of time for each draw and subsequent
check is assumed to be exponentially distributed with the same
rate parameter, namely equal accessibility. Intriguingly, McGill’s
(1963) serial model is mathematically identical to the standard
parallel model with exponential processing times.

Vorberg and Ulrich (1987) subsequently generalized McGill’s
model according to the assumption of unequal accessibility. By
allowing some items more easily to be accessed from memory
than the others (Shiffrin, 1970), the generalized model removes
some minor discrepancies between the data and McGill’s model
in predicting the number of generated items by a certain time
moment. The stochastic representation of Vorberg and Ulrich
(1987)’s serial model is then found to be

P (I) fs (T1 = t1, . . . , Tn = tn|I = (i1, . . . , in))

=

⎛⎝ n∏
j=1

uij∑n
l=j uil

⎞⎠⎡⎣ n∏
j=1

⎛⎝ n∑
l=j

uil

⎞⎠ exp

⎛⎝−

n∑
l=j

uil tj

⎞⎠⎤⎦ ,

where uij stands for the rate parameter for processor (or item) ij
and n is the number of recallable target items within the search
set. The model predicts that the rate parameter of the jth ICT
equals the sum of rate parameters of processors that have not
been executed, that are the j + 1th order of processor to the
nth order of processor. Note that when the equal accessibility
assumption is imposed (u = ui1 = · · · = uin ), the ICT distribution
does not depend on the recall order any more and the conditional
joint density function is reduced to

fs (T1 = t1, . . . , Tn = tn|I = (i1, . . . , in))

=

n∏
j=1

(n − j + 1)uexp
[
− (n − j + 1) utj

]
,
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which is the original McGill (1963) model. Note by observing the
above equation, McGill (1963)’s model indicates that the ICTs, or
equivalently processing times, are not i.i.d. Vorberg and Ulrich
(1987) also derived the stochastic representation of the counter-
part parallel model with the assumption of unequal accessibility:

fp (T1 = τ1, . . . ,Tn = τn; I = (i1, . . . , in))

=

n∏
j=1

uijexp
(
−uijτij

)
.

Observe that the TCTs are stochastically independent of each
other in the counterpart parallel model. By imposing the equal
accessibility assumption (u = ui1 = · · · = uin ), the above
equation is reduced to

fp (T1 = τ1, . . . ,Tn = τn; I = (i1, . . . , in))

=

n∏
j=1

uexp
(
−uτij

)
which is McGill (1963)’s model in the parallel model’s represen-
tation. Observe it is also the mathematical representation of the
standard parallel model with exponential processing times.

Following McGill’s model, Rohrer and Wixted (1994) derived
a function for the mean ICT changes as more items are reported
by the subjects:

Tj =
1

u(n − j)
,

where Tj is the mean of the jth ICT. This equation reflects that
an ICT is inversely proportional to n − j. Thus, the last ICT of a
four-item recall should equal the last ICT of a nine-item recall.

Rohrer and Wixted (1994) conducted experiments by asking
the subjects to recall the words studied earlier. By manipulating
the size of the study word list or/and the presentation time
for each word, they found that the hyperbolic ICT growth re-
flected by the above equation fitted the data well. As mentioned
earlier, McGill’s serial model is identical to the standard paral-
lel model with exponential processing times. Thus, Rohrer and
Wixted (1994)’s study supports the independent and identical
processing time assumption if one considers the recall a parallel
process.

1.5. The goal of this study

Our work complements the work on differentiating the serial
models and parallel models. We characterize the foundational
distinctions between standard serial models (a special class of
serial models) and standard parallel models (a special class of
parallel models). This goal leads us directly to investigate the de-
pendence of TCTs, the actual processing times of parallel systems
as well as the dependence of ICTs, the actual processing times of
serial systems. As we have mentioned, a primary axiom of a stan-
dard serial model is that the ICTs (i.e., the processing time) are
independent. In contrast, for a standard parallel model, the TCTs
(i.e., the processing times) are independent. Thus, our mission
in this work, is to explore the ICT dependence characteristics of
standard parallel models and the TCT dependence characteristics
of standard serial models. To be more specific, we investigate the
behavior of (conditional) distributions, of the TCT of processors
and the ICT in complete generality, that is, without assuming any
particular form for the distributions of processing times.

The pioneers (McGill, 1963; Rohrer & Wixted, 1994; Vorberg
& Ulrich, 1987) developed serial models or/and parallel models
to account for temporal characteristics observed in free recall
experiments. Some model they developed can be considered as
a restricted version of the standard parallel model. We explore

further by examining under what condition the theoretically de-
rived behavior from the (unrestricted) standard parallel model
is consistent with the empirical findings that the ICT grows as
a function of output position.

In a free recall task, one has to exhaustively report all the
items that belong to a specific category frommemory. This type of
stopping rule is traditionally termed as ‘‘exhaustive’’ (Townsend &
Nozawa, 1995). The standard serial models and standard parallel
models are associated with this rule: All the processors in the
models have to be completed to conclude a model. If a model
is terminated once one processor out of the n processors is fully
executed, this type of stopping rule is traditionally termed as
‘‘self-terminating’’. In this article, all the results are irrelevant to
‘‘self-terminating’’.

In a previous publication (Zhang, Liu, & Townsend, 2018), our
treatment was limited to two channels or stages in operation. In
the current study, we extend our conclusions to the case of arbi-
trary n. In order to facilitate comprehension of the general case,
we provide a brief review of findings for the two-process models
in the next section. All the theorems, corollaries, and lemmas
in this section were reported in our earlier publication (Zhang
et al., 2018). The readers can access the mathematical proofs
and computational simulations associated with those theorems,
corollaries, and lemmas from that chapter.

2. Standard two-process models

Suppose there are only two processors a and b in the models
to realize standard two-process serial models and the comparable
standard two-process parallel models.

Let us denote the processing times of a and b as za and zb
(recall that they are i.i.d, whether in a serial or a parallel model)
and the density function for each as f . The corresponding distri-
bution function is labeled as F . The survival function, the hazard
function, and the cumulative hazard function are represented
respectively as

S(x) = 1 − F (x),

h(x) =
f (x)
S(x)

,

H (x) =

∫ x

0
h (x) dx = −ln [S (x)] ,

where x denotes a temporal variable. The readers should pay
attention to the notation. In this paper S always denotes the
survival function.

Standard two-process serial models. Since two processors
are under consideration, the model can be decomposed into
two stages. If processor a is executed earlier than processor b,
then processor a is stage 1. If processor a is executed later than
processor b, then processor b is stage 1 (Fig. 2).

As defined earlier, the ICT T1 is the time that is spent process-
ing in stage 1 and T2 is the time that is spent processing in stage 2.
So, for Case I, T1 = za, T2 = zb and for Case II, T1 = zb, T2 = za. It is
apparent that T1 and T2 are i.i.d as za and zb are assumed i.i.d. The
TCT Ta is the time that is consumed from the onset of the model
to the moment that processor a is completed. The TCT Tb is the
time that is consumed from the onset of the model to the moment
that processor b is completed. Therefore, for Case I, Ta = T1 = za,
Tb = T1 + T2 = za + zb and for Case II, Ta = T1 + T2 = za + zb,
Tb = T1 = zb.

Standard two-process parallel models. Since two processors
are under consideration (see an example in Fig. 3), the TCT for
processor a and the TCT for processor b are

Ta = za,
Tb = zb,
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Fig. 2. Possible processor arrangements of a standard two-process serial model.
From ‘‘A Theoretical Study of Process Dependence for the Standard Two-Process
Serial Models and Standard Two-Process Parallel Models’’, by R. Zhang, Y. Liu,
and J.T. Townsend, in T. Lachmann and T. Weis (Eds.), Invariances in Human
Information Processing (pp. 117–142), 2018, New York, NY: Taylor1 & Francis
Group.
Source: Reprinted with permission.
© 2018 Taylor & Francis Group.

Fig. 3. A standard two-process parallel model. From ‘‘A Theoretical Study of
Process Dependence for the Standard Two-Process Serial Models and Standard
Two-Process Parallel Models’’, by R. Zhang, Y. Liu, and J.T. Townsend, in T.
Lachmann and T. Weis (Eds.), Invariances in Human Information Processing
(pp. 117–142), 2018, New York, NY: Taylor & Francis Group.
Source: Reprinted with permission.
© 2018 Taylor & Francis Group.

respectively. Please note that Fig. 3 is an exemplar representation
of a standard two-process parallel model in which processor
a is faster than processor b. With some non-zero probability,
processor a will be slower than processor b as za and zb are i.i.d.
The ICTs in Fig. 3 can be represented as

T1 = Ta = za,
T2 = Tb − Ta = zb − za.

2.1. Dependence of total completion times, n = 2

As observed earlier, the TCT of a parallel channel (item, etc.)
is its processing time and perforce, in a standard parallel model
is independent of the processing times of the other channels. An
intuition about the potential comparable dependencies in a serial
model is the following: condition TCT for processor ‘‘b’’ on that for
‘‘a’’. Now, if ‘‘b’’ is done first then, since the TCT for ‘‘a’’ is the sum
of the two processing times for ‘‘a’’ plus that of ‘‘b’’, the probability
that the TCT for ‘‘b’’ is less than τ , given that the sum is already <
τ , must be 1. If ‘‘a’’ is done first by time τ , the probability that ‘‘b’’
also gets done by τ is greater than its marginal probability. Thus,
this qualitative intuition suggests that the TCT in a serial model
should be positively dependent. We will learn that this reasoning
is faulty in general but correct when only one processing order is
allowed.

We move on to perform the actual required computations,
comparing the distribution function of Tb conditional on Ta ver-
sus the marginal distribution function of Tb. That is

P (Tb ≤ τ |Ta ≤ τ) − P (Tb ≤ τ) . (1)

If it is always positive then we conclude that the TCTs in this
case are positively dependent in a strong distributional sense,
and conversely if the difference is negative. Please note that (1)
considers two possible permutations as illustrated in Fig. 2.

It was proven by Townsend and Ashby (1983, Page 73–74), if
the processing times za and zb (or the ICTs T1 and T2) in a two-
process serial model are i.i.d and follow exponential distributions,
then (1) > 0 for τ > 0. This result is compatible with the above
intuition. However, we recently found (1) > 0 does not hold for
all processing time distributions (Zhang et al., 2018).

Theorem 1. For a standard two-process serial model, P(Tb ≤

τ |Ta ≤ τ ) − P(Tb ≤ τ ) can be either positive or nonpositive for
τ > 0.

Corollary 2 states if only one permutation is allowed in the
investigated system, dependence of TCTs is non-negative, that is
(1) ≥ 0. We also compute the covariance of TCTs. The result is
presented in Lemma 3.

Corollary 2 and Lemma 3 correspond to our original intuitions
and the Townsend and Ashby (1983) theorem when the distri-
butions are gamma (Erlang). The covariance result in Lemma 3 is
especially pleasing.

Corollary 2. For a standard two-process serial model, P (Tb ≤

τ |Ta ≤ τ) − P (Tb ≤ τ) is nonnegative for τ > 0 if only the Case
I arrangement or only the Case II arrangement is allowed in the
investigated system.

Lemma 3. For a standard two-process serial model, if only the
Case I arrangement or only the Case II arrangement is allowed,
Cov (Ta,Tb) = Var (T1) > 0.

We know by the very definition of standard parallel models,
that the TCTs are independent. However, we include the obvious
statements for ease of reference. It is therefore listed that (1) =

0 and this statement is presented in as Theorem 4. We also
compute the covariance of TCTs for standard two-process parallel
models. The result is presented in Lemma 5.

Theorem 4. For a standard two-process parallel model, P (Tb ≤

τ |Ta ≤ τ) − P (Tb ≤ τ) = 0 for τ > 0.

Lemma 5. For a standard two-process parallel model, Cov (Ta,Tb)
= 0.

Standard two-process serial models and standard two-process
parallel models can be differentiated according to Theorems 1
and 4: P (Tb ≤ τ |Ta ≤ τ) − P (Tb ≤ τ) cannot always be zero
for a standard two-process serial model; while as for a standard
two-process parallel model, the function maintains zero along the
axis of τ . One can also differentiate the two models according to
Lemmas 3 and 5.

2.2. Dependence of intercompletion times, n = 2

The ICTs, and therefore the processing times, in a standard
serial model are assumed i.i.d. Therefore, the empirical finding in
free recall tasks that as the number of stages already completed
increases, the ICTs increase, cannot be accounted for by standard
serial models. In contrast, standard parallel models can account
for this phenomenon as noted by McGill (1963) and Vorberg and
Ulrich (1987). The intuition of course, is that the later stages
included fewer and fewer parallel processes still to complete and
therefore the probability that the minimum time for one of these
remaining processors to finish inevitably lengthens. However, it
is so far unknown as to whether this behavior is characteristic of
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all standard parallel models. We shall learn that it is not. First,
however, we will investigate a related, but distinct question.

Without loss of generality, we label the processor completed
earlier processor a and the other is labeled as processor b in a
standard two-process parallel model. Recall that the processing
times za and zb, or equivalently Ta and Tb, are assumed i.i.d. Now
let us label the ICTs for stage 1 and stage 2 as Ta and Tb, where

Ta = Ta = za,
Tb = Tb − Ta = zb − za.

One topic of interest is how the ICTs act in later stages as a
function of the magnitude of the earlier stages. For n = 2, this
simply suggests we investigate the likelihood that the second
stage ICT Tb, is not completed by time t, given that the first
stage is entirely completed. We thus explore the survival function
of the ICT Tb conditional on the processing time of stage 1:
P (Tb > t|zb > za), where t > 0. Interestingly, it is found that the
behavior of P (Tb > t|zb > za) depends on the hazard function of
processing time h.

Lemma 6. For a standard two-process parallel model, if the haz-
ard function h for an arbitrary channel is non-increasing, then
P (Tb > t|zb > za) is non-decreasing as Ta is increased.

This result begins to tie the behavior of subsequent ICT times
with the hazard function. The finding that they stochastically
lengthen as a function of the previous finishing time, if the hazard
function is non-increasing, makes intuitive sense.

A separate issue, and one more directly related to the question
of whether successive ICTs tend to grow longer, is ‘‘How does
the later stage duration (stage 2) compare with the earlier stage
duration (stage 1) in a standard two-process parallel model?’’ Let
us denote the ratio of the hazard functions:

α (t, Ta + t) =
h (Ta + t)

h (t)
.

The survival function at stage 1 in the standard two-process
parallel model is the product of two survival functions S2(t). The
survival function at stage 2 is

P (Tb > t|zb > za)
= P (Tb + Ta > t + Ta|zb > za)
= P (zb > t + Ta|zb > za)

=
S(Ta + t)
S(Ta)

.

We then investigated S2(t) vs. S(Ta+t)
S(Ta)

. If the survival function
from stage 1 to stage 2 is increasing, that is S2 (t) −

S(Ta+t)
S(Ta)

<

0, this trend is then consistent with the empirical finding that
the ICT grows as the number of stages grows, in a strong dis-
tributional sense. Theorem 7 provides an exact condition for
the survival function to increase from stage 1 to 2. Corollary 8
states that standard two-process parallel models with a concave
or linear cumulative hazard function H(t) predict an increasing
survival function from stage 1 to stage 2, for arbitrary t.

Theorem 7. In a standard two-process parallel model, if α (t, Ta + t)
< 2, then S2 (t) −

S(Ta+t)
S(Ta)

< 0 so that the survival function of ICT is

increasing from the first stage to the second stage; if α (t, Ta + t) ≥

2, then S2 (t) −
S(Ta+t)
S(Ta)

≥ 0 so that the survival function of ICT is
non-increasing from the first stage to the second stage.

Thus, we have the intriguing and reasonable prediction that
any standard two-process parallel model whose hazard function
ratio α is less than the number 2 (i.e., α < 2) will evidence
increasing conditional survivor functions and hence result in the

longer ICT in the second stage than the first stage. This result has
an elegant consequence that can be expressed in terms of the
integrated hazard functions, as visited in Corollary 8.

Corollary 8. For a standard two-process parallel model, (i) if the
cumulative hazard function H(t) is concave or linear, then S2 (t) −
S(Ta+t)
S(Ta)

< 0; (ii) if H(t) is convex, then the sign of S2 (t) −
S(Ta+t)
S(Ta)

is
uncertain.

The quick interpretation is that anything as slow or slower
than an exponential (recall that an exponential distribution has
a linear H(t)), and therefore constant, hazard function will imply
stochastically increasing ICTs. If H(t) is convex, indicating an
increasing h(t), then more information must be garnered. The
upshot is, as intuition may suggest, that standard parallel models
appear to tend to produce increasing ICTs, but that inclination can
be defeated by dramatically increasing hazard functions.

3. Standard multiple-process models

We now proceed to generalize the theorems for standard two-
process models to standard multiple-process models. All the the-
orems, corollaries, and lemmas in this section are new. Suppose
there are processors 1, . . . , n in the model. Recall that 1, . . . , n
in the term ‘‘processors 1, . . . , n’’ represent the identities of the
processors not the positions in the processing order. The corre-
sponding processing times z1, . . . , zn are assumed to be i.i.d with
the density function f . The corresponding distribution function,
survival function, hazard function, and the cumulative hazard
function are labeled as F , S, h, and H , respectively. At this point,
we do not have a completely analytic proof for arbitrary n. How-
ever, we will write down the general expressions and then pick
an arbitrary value of n with which to perform the pertinent
computations.

3.1. Dependence of total completion times, general n

There are n! ways to arrange the n processors in the standard
n-process serial models. If we were to assay the behavior of
models where the identity or location of a processor was associ-
ated with distinct probability distribution, that would necessitate
a more complex notation. However, due to the assumption of
i.i.d random variables, we can invoke a much-simplified set of
symbols (see Townsend & Ashby, 1983, Chapter 15; Townsend
et al., 2018; or Houpt et al., 2017, for the more general situation).

Thus, Fig. 4 presents two particular cases where processors
1, . . . , j are processed earlier than processors j + 1, . . . , n (Case
I) and processors 1, . . . , j are processed later than processors
j + 1, . . . , n (Case II). According to the earlier definition, Tj is
the time that is consumed from the onset of processing to the
moment that processor j is complete, where 1 ≤ j ≤ n. Sj is
the time spent from the onset of processing to the completion of
stage j. Notice that for generality, processor j can be completed at
any stage. Therefore Tj is not necessarily equal to Sj. Specifically,
following case II of Fig. 4, the TCT of item n is Tn = zj+1 +· · ·+ zn
but the TCT for stage n is Sn = zj+1+· · ·+zn+z1+· · ·+zj, where
zi, i ∈ {1, 2, . . . , j, j + 1 · · · , n} is the processing time for item i.

Similarly, as for the two-process standard models, we aim
to investigate the joint distribution of Tj+1, . . . ,Tn conditional
on T1, . . . ,Tj versus the unconditional distribution function of
Tj+1, . . . ,Tn. That is

P(Tj+1 ≤ τ , . . . ,Tn ≤ τ |T1 ≤ τ , . . . ,Tj ≤ τ )

− P
(
Tj+1 ≤ τ , . . . ,Tn ≤ τ

)
. (2)

Now, if Tj+1, . . . ,Tn are finished before T1, . . . ,Tj, since each
of T1, . . . ,Tj includes the amount of max(Tj+1, . . . ,Tn), the prob-
ability that Tj+1, . . . ,Tn are less than τ , given that each of
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Fig. 4. Examples of possible serial arrangements for n processors.

T1, . . . ,Tj already < τ , must be 1. If T1, . . . ,Tj are done first by
time τ , the probability that Tj+1, . . . ,Tn also is finished by τ is
greater than its marginal probability. Thus, this suggests that the
TCT in a n-process serial model should be positively dependent.
We will learn that this reasoning is incorrect without restriction
on the processing order but correct when only one processing
order is allowed.

At this point, we do not have a completely analytic proof for
arbitrary n. However, we will write down the general expressions
and then pick an arbitrary value of n with which to perform the
pertinent computations. Theorem 9 is proved based on simulating
the function derived from (2).

Theorem 9. For a standard n-process serial model,

P(Tj+1 ≤ τ , . . . ,Tn ≤ τ |T1 ≤ τ , . . . ,Tj ≤ τ )
− P

(
Tj+1 ≤ τ , . . . ,Tn ≤ τ

)
can be either positive or nonpositive for τ > 0.

Proof. First note that

P(Tj+1 ≤ τ , . . . ,Tn ≤ τ |T1 ≤ τ , . . . ,Tj ≤ τ )

=
P(Tj+1 ≤ τ , . . . ,Tn ≤ τ ,T1 ≤ τ , . . . ,Tj ≤ τ )

P
(
T1 ≤ τ , . . . ,Tj ≤ τ

) .

We have

P
(
Tj+1 ≤ τ , . . . ,Tn ≤ τ ,T1 ≤ τ , . . . ,Tj ≤ τ

)
= P

[
max

(
Tj+1, . . . ,Tn,T1, . . . ,Tj

)
≤ τ

]
= P (z1 + · · · + zn ≤ τ)

=

∫ τ

0
· · ·

∫ t3

0

∫ t2

0
f (τn − τn−1) · · · f (τ2 − τ1) f (τ1) dτ1dτ2 · · · dτn

= f (τ )∗(n−1)
∗ F (τ ) ,

where f (τ )∗m = f (τ ) ∗ · · · ∗ f (τ )  
mf (τ )

′ s

.

Now, we need to compute P
(
T1 ≤ τ , . . . ,Tj ≤ τ

)
. Since there is

no restriction on the order of processing, it is possible to finish j
processors in the jth stage and any stage after that. We observe
that

max
(
T1, . . . ,Tj

)
∈
{
Sj, Sj+1, . . . , Sn

}
.

We denote the probability that processors 1 to j finish in stage i
as pi, such that

pi = P
[
max

(
T1, . . . ,Tj

)
= Si

]
,

where i ∈ {j, j + 1, . . . , n − 1} and the probability that processors
1 to j finish in stage n as q, such that

q = P
[
max

(
T1, . . . ,Tj

)
= Sn

]
.

It is apparent that pj + pj+1 + · · · + pn−1 + q = 1. The cumulative
distribution function of the TCT for the ith stage is

P (Si ≤ τ) =

∫ τ

0
· · ·

∫ t3

0

∫ t2

0
f (τi − τi−1) · · · f (τ2 − τ1)

× f (τ1) dτ1dτ2 · · · dτi = f (τ )∗(i−1)
∗ F (τ )

and for the last stage is

P (Sn ≤ τ) = P (t1 + · · · + tn ≤ τ)

=

∫ τ

0
· · ·

∫ t3

0

∫ t2

0
f (τn − τn−1) · · · f (τ2 − τ1) f (τ1) dτ1dτ2 · · · dτn

= f (τ )∗(n−1)
∗ F (τ ) .

Therefore P
(
T1 ≤ τ , . . . ,Tj ≤ τ

)
can be written as

P
(
T1 ≤ τ , . . . ,Tj ≤ τ

)
= P

[
max

(
T1, . . . ,Tj

)
≤ τ

]
= pjP

(
Sj ≤ τ

)
+ · · · + pn−1P (Sn−1 ≤ τ) + qP (Sn ≤ τ)

= pj
[
f (τ )∗(j−1)

∗ F (τ )
]
+ · · · + pn−1

[
f (τ )∗(n−2)

∗ F (τ )
]

+ q
[
f (τ )∗(n−1)

∗ F (τ )
]
.

Next, we want to compute P
(
Tj+1 ≤ τ , . . . ,Tn ≤ τ

)
. There are n

− j processors to be finished. They can be fully executed in the
(n − j)th stage and any stage after that. Therefore, we have

max
(
Tj+1, . . . ,Tn

)
∈
{
Sn−j, Sn−j+1, . . . , Sn

}
.

Here we denote the probability that processor j + 1 to processor
n finish in stage k as qk, such that

qk = P
[
max

(
Tj+1, . . . ,Tn

)
= Sk

]
,

where k ∈ {n − j, n − j + 1, . . . , n − 1}. Recall that q denotes the
probability that processor 1 to processor j complete in the last
stage. It is equivalent to the probability that processor j + 1 to
processor n finish before stage n. Therefore, it follows that

qn−j + qn−j+1 + · · · + qn−1 = q

and following the similar reasoning,

P
[
max

(
Tj+1, . . . ,Tn

)
= Sn

]
= pj + pj+1 + · · · + pn−1.

Combining the above two equations together, we have

pj + pj+1 + · · · + pn−1 + qn−j + qn−j+1 + · · · + qn−1 = 1.

Thus,

P
(
Tj+1 ≤ τ , . . . ,Tn ≤ τ

)
= P

[
max

(
Tj+1, . . . ,Tn

)
≤ τ

]
= qn−jP

(
Sn−j ≤ τ

)
+ · · · + qn−1P (Sn−1 ≤ τ) + (pj + pj+1 + · · ·

+ pn−1)P (Sn ≤ τ)

= qn−j
[
f (τ )∗(n−j−1)

∗ F (τ )
]
+ · · · + qn−1

[
f (τ )∗(n−2)

∗ F (τ )
]

+
(
pj + pj+1 + · · · + pn−1

) [
f (τ )∗(n−1)

∗ F (τ )
]
.

Therefore, we arrive at the complicated expression

P(Tj+1 ≤ τ , . . . ,Tn ≤ τ |T1 ≤ τ , . . . ,Tj ≤ τ ) − P
(
Tj+1 ≤ τ , . . . ,Tn ≤ τ

)
=

f (τ )∗(n−1) ∗ F (τ )

pj
[
f (τ )∗(j−1) ∗ F (τ )

]
+ · · · + pn−1

[
f (τ )∗(n−2) ∗ F (τ )

]
+ q

[
f (τ )∗(n−1) ∗ F (τ )

]
−

{
qn−j

[
f (τ )∗(n−j−1)

∗ F (τ )

]
+ · · · + qn−1

[
f (τ )∗(n−2)

∗ F (τ )

]
+
(
pj + pj+1 + · · · + pn−1

) [
f (τ )∗(n−1)

∗

F (τ )]
}

. (3)
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We are now in a position to investigate the sign of (3). (3)
takes account of all the possible permutations for the n proces-
sors. If we consider two permutations as illustrated in Fig. 4, then

pj+1 = · · · = pn−1 = qn−j+1 = · · · = qn−1 = 0.

If we can prove (3) can be both positive and nonpositive for the
two permutations, the statement of this theorem will be proven
for a given value of n. At this point we see that

(3) =
f (τ )∗(n−1)

∗ F (τ )

pj
[
f (τ )∗(j−1)

∗ F (τ )
]
+ qn−j

[
f (τ )∗(n−1)

∗ F (τ )
]

−
{
qn−j

[
f (τ )∗(n−j−1)

∗ F (τ )
]

+pj
[
f (τ )∗(n−1)

∗ F (τ )
]}

= R"
{
1 − pjqn−j

{[
f (τ )∗(n−1)

∗ F (τ )
] 1
2

−

[
f (τ )∗(n−j−1)

∗ F (τ )
] 1
2
[
f (τ )∗(j−1)

∗ F (τ )
] 1
2[

f (τ )∗(n−1)
∗ F (τ )

] 1
2

⎫⎬⎭
2

+ pjqn−j

{[
f (τ )∗(j−1)

∗ F (τ )
] 1
2 −

[
f (τ )∗(n−j−1)

∗ F (τ )
] 1
2

}2

−pj
[
f (τ )∗(j−1)

∗ F (τ )
]
− qn−j

[
f (τ )∗(n−j−1)

∗ F (τ )
] }

, (4)

where R" =
f (τ )∗(n−1)

∗F(τ )

pj[f (τ )∗(j−1)∗F(τ )]+qn−j[f (τ )∗(n−1)∗F(τ )] and pj + qn−j = 1. If

f (τ )∗(j−1)
∗ F (τ ) = f (τ )∗(n−j−1)

∗ F (τ ), that is j =
n
2 , and then (4)

is reduced to

R"

⎧⎪⎨⎪⎩1 − pjqn−j

⎧⎨⎩[f (τ )∗(n−1)
∗ F (τ )

] 1
2 −

f (τ )∗(j−1)
∗ F (τ )[

f (τ )∗(n−1)
∗ F (τ )

] 1
2

⎫⎬⎭
2

−
[
f (τ )∗(j−1)

∗ F (τ )
]⎫⎬⎭ .

Since pjqn−j ≤
1
4 , the above expression is

≥ R"

⎧⎪⎨⎪⎩1 −
1
4

⎧⎨⎩[f (τ )∗(n−1)
∗ F (τ )

] 1
2 −

f (τ )∗(j−1)
∗ F (τ )[

f (τ )∗(n−1)
∗ F (τ )

] 1
2

⎫⎬⎭
2

−
[
f (τ )∗(j−1)

∗ F (τ )
]⎫⎬⎭ . (5)

Note that if pj =
1
2 , the above ≥ reduces to =. Now, it is requisite

to investigate the sign of (5). If it can be both positive and
nonpositive, it indicates that (2) can be positive and nonpositive.
We have this ordering:

0 < f (τ )∗(n−1)
∗ F (τ ) ≤ f (τ )∗(j−1)

∗ F (τ ) ≤ 1

≤
f (τ )∗(j−1)

∗ F (τ )[
f (τ )∗(n−1)

∗ F (τ )
] 1
2
,

as f (τ )∗(j−1)
∗F(τ )

[f (τ )∗(n−1)∗F(τ )]
1
2

=

[
f (τ )∗(j−1)

∗F(τ )f (τ )∗(j−1)
∗F(τ )

f (τ )∗(n−1)∗F(τ )

] 1
2

=

[
f (τ )∗(j−1)

∗F(τ )f (τ )∗(n−j−1)
∗F(τ )

f (τ )∗(n−1)∗F(τ )

] 1
2

=

[
P(Sj≤τ )P(Sn−j≤τ )

P(Sn≤τ )

] 1
2

=[
P(max(Sj,Sn−j))≤τ

P(Sn≤τ )

] 1
2

≥ 1. The sign of (5) was computed using the

simulation-based method the same as that was used for n = 2
following these steps:

Step 1: generate a random number α ∼ Uniform [0, 1], where α

represents f (τ )∗(n−1)
∗ F (τ ).

Step 2: generate a random number β ∼ Uniform [α, 1], where β

represents f (τ )∗(j−1)
∗ F (τ ).

Step 3: if β2

α
≥ 1, then compute if the part after R′′ for (5) > 0.

It was found that the probability of the part after R′′ for (5)
> 0 given β2

α
≥ 1 is 62%. The simulation result indicates that (5)

can be either positive or nonpositive. □

We proceed constructing several examples that help to clarify
Theorem 9. We assume that there are three processors in a stan-
dard serial model, whose processing times are i.i.d and labeled
as:

z1, z2, z3.

Of course, one can construct examples that have more than
three processors in the models. Here we only discuss standard
three-process serial models. Adapting the above expressions, and
without loss of generality, one is interested in the signs of the
two functions below:

P (T1 ≤ τ |T2 ≤ τ ,T3 ≤ τ) − P (T1 ≤ τ) ,

P (T1 ≤ τ ,T2 ≤ τ |T3 ≤ τ) − P (T1 ≤ τ ,T2 ≤ τ) .

We will only discuss the behavior of first of the two above
functions. The other function can be examined in an analogous
fashion.

According to the earlier definition of T and S, we see that

max (T2,T3) ∈ {S2, S3} ,

T1 ∈ {S1, S2, S3} .

We subsequently denote

P [max (T2,T3) = S2] = p2,
P [T1 = S1] = q1,
P [T1 = S2] = q2.

Then apparently, we have

P [max (T2,T3) = S3] = q1 + q2,
P [T1 = S3] = p2,

and

p2 + q1 + q2 = 1.

Consequently,

P (T2 ≤ τ ,T3 ≤ τ)

= P (max(T2,T3) ≤ τ)

= p2P (S2 ≤ τ) + (q1 + q2) P (S3 ≤ τ)

= p2f (τ ) ∗ F (τ ) + (q1 + q2)f (τ ) ∗ f (τ ) ∗ F (τ ) ,

P (T1 ≤ τ)

= q1P (S1 ≤ τ) + q2P (S2 ≤ τ) + p2P (S3 ≤ τ)

= q1F (τ ) + q2f (τ ) ∗ F (τ ) + p2f (τ ) ∗ f (τ ) ∗ F (τ ) .

Therefore,

P (T1 ≤ τ |T2 ≤ τ ,T3 ≤ τ) − P (T1 ≤ τ)

=
P (T1 ≤ τ ,T2 ≤ τ ,T3 ≤ τ)

P (T2 ≤ τ ,T3 ≤ τ)
− P (T1 ≤ τ)

=
f (τ ) ∗ f (τ ) ∗ F (τ )

p2f (τ ) ∗ F (τ ) + (q1 + q2)f (τ ) ∗ f (τ ) ∗ F (τ )

− (q1F (τ ) + q2f (τ ) ∗ F (τ ) + p2f (τ ) ∗ f (τ ) ∗ F (τ )) . (6)

Let us consider some specific often employed, distributions.
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Fig. 5. The plots of function (6) for (a) k = .5, (b) k = 1, and (c) k = 1.5. Note that τ has the arbitrary unit.

Weibull distributions. Let z1, z2, z3 be i.i.d and follow the
Weibull distribution with the density function

f (τ ) = ku(uτ )k−1exp
[
− (uτ)k

]
,

where the parameters k, u > 0. We used simulation methods
to compute the values of (6) by selecting p2 = q1 = q2 =

1
3 .

Here we present plots for (6) by varying the values of τ and u
(Fig. 5). We allowed u to vary from .5 to 10 and τ to vary from
0.01 to 5. Fig. 5(a) fixes k = .5, Fig. 5(b) fixes k = 1, where
the Weibull distributions reduce to exponential distributions, and
Fig. 5(c) fixes k = 1.5. The three plots for (6) are non-negative.

Next, we explore the uniform distribution. Although perhaps,
unrealistic in fact, it has often been employed to represent the so-
called base time distribution, namely the duration which captures
the additional unmodeled psychological processes such as early
sensory and late motor stages.

Uniform distributions. Let z1, z2, z3 be i.i.d and follow the
uniform distribution

z1, z2, z3 ∼ Uniform (0, v) ,

where v > 0. The corresponding distribution function is

F (τ ) =

{τ

v
, if 0 ≤ τ ≤ v

1, otherwise .

Also, we have

f (τ ) ∗ F (τ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ τ

0

τ2

v2 dτ2 =
τ 2

2v2 , if 0 ≤ τ < v,∫ τ

v

2v − τ2

v2 dτ2 +
1
2

=
2τ
v

−
τ 2

2v2 − 1,

if v ≤ τ < 2v,

1, if 2v ≤ τ .

f (τ ) ∗ f (τ ) ∗ F (τ )

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ τ

0

τ 2
3

2v3 dτ3 =
τ 3

6v3 , if 0 ≤ τ < v,∫ τ

v

(
−

τ 2
3

v3 +
3τ3
v2 −

3
2v

)
dτ3 +

1
6

= −
τ 3

3v3 +
3τ 2

2v2

−
3τ
2v +

1
2 , if v ≤ τ < 2v,∫ τ

2v

(
τ 2
3

2v3 −
3τ3
v2 +

9
2v

)
dτ3 +

5
6

=
τ 3

6v3 −
3τ 2

2v2 +
9τ
2v

−
7
2 , if 2v ≤ τ < 3v,

1, if 3v ≤ τ .

For 3v ≤ τ ,

P (T1 ≤ τ |T2 ≤ τ ,T3 ≤ τ) − P (T1 ≤ τ)

=
f (τ ) ∗ f (τ ) ∗ F (τ )

p2f (τ ) ∗ F (τ ) + (q1 + q2) f (τ ) ∗ f (τ ) ∗ F (τ )

− (q1F (τ ) + q2f (τ ) ∗ F (τ ) + p2f (τ ) ∗ f (τ ) ∗ F (τ ))

=
1

p2 + (q1 + q2)
− (q1 + q2 + p2)

= 0;

for 2v ≤ τ < 3v,

P (T1 ≤ τ |T2 ≤ τ ,T3 ≤ τ) − P (T1 ≤ τ)

=
f (τ ) ∗ f (τ ) ∗ F (τ )

p2f (τ ) ∗ F (τ ) + (q1 + q2) f (τ ) ∗ f (τ ) ∗ F (τ )

− (q1F (τ ) + q2f (τ ) ∗ F (τ ) + p2f (τ ) ∗ f (τ ) ∗ F (τ ))

=
f (τ ) ∗ f (τ ) ∗ F (τ )

p2 + (q1 + q2) f (τ ) ∗ f (τ ) ∗ F (τ )

− (q1 + q2 + p2f (τ ) ∗ f (τ ) ∗ F (τ ))

=
−p2(1 − p2)

p2 + (q1 + q2) f (τ ) ∗ f (τ ) ∗ F (τ )

×
[
(f (τ ) ∗ f (τ ) ∗ F (τ ))2 − 2f (τ ) ∗ f (τ ) ∗ F (τ ) + 1

]
≤ 0;

for v ≤ τ < 2v and 0 ≤ τ < v, we ran simulations to investigate
the behavior of (6) and the result is plotted in Fig. 6. Again, we
fixed p2 = q1 = q2 =

1
3 and v = 2. By observing the plot,

we conclude that (6) can be either positive or nonpositive for
uniformly distributed processing times.

It is now a good place to demonstrate, for any n, that if
only one order of processing is allowed, the dependence of total
completion times is always nonnegative. This too, generalizes our
earlier results for n = 2.

Corollary 10. For a standard n-process serial model, P(Tj+1 ≤

τ , . . . ,Tn ≤ τ |T1 ≤ τ , . . . ,Tj ≤ τ ) − P
(
Tj+1 ≤ τ , . . . ,Tn ≤ τ

)
is

non-negative for τ > 0 if only one permutation is allowed.

Proof. According to the derivation in Theorem 9, we have

P(Tj+1 ≤ τ , . . . ,Tn ≤ τ |T1 ≤ τ , . . . ,Tj ≤ τ ) − P
(
Tj+1 ≤ τ , . . . ,Tn ≤ τ

)
=

f (τ )∗(n−1)
∗ F (τ )

pj
[
f (τ )∗(j−1)

∗ F (τ )
]
+ · · · + pn−1

[
f (τ )∗(n−2)

∗ F (τ )
]
+ q

[
f (τ )∗(n−1)

∗ F (τ )
]

−
{
qn−j

[
f (τ )∗(n−j−1)

∗ F (τ )
]
+ · · · + qn−1

[
f (τ )∗(n−2)

∗ F (τ )
]

+
(
pj + pj+1 + · · · + pn−1

) [
f (τ )∗(n−1)

∗ F (τ )
]}

.
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Fig. 6. The plot of function (6) for uniformly distributed processing times. Note
that τ has the arbitrary unit.

If one permutation is allowed, one and only one element in the
set{
pj, pj+1, . . . , pn−1, qn−j, qn−j+1, . . . , qn−1

}
is 1 and the other elements are 0s. So, the above equation can be
written as

= R
{
f (τ )∗(n−1)

∗ F (τ )

−
{
qn−j

[
f (τ )∗(n−j−1)

∗ F (τ )
]
+ · · · + qn−1

[
f (τ )∗(n−2)

∗ F (τ )
]

+
(
pj + pj+1 + · · · + pn−1

) [
f (τ )∗(n−1)

∗ F (τ )
]}

×
{
pj
[
f (τ )∗(j−1)

∗ F (τ )
]
+ · · ·

+pn−1
[
f (τ )∗(n−2)

∗ F (τ )
]
+ q

[
f (τ )∗(n−1)

∗ F (τ )
]}}

= R
{
f (τ )∗(n−1)

∗ F (τ ) − f (τ )∗(l−1)
∗ F (τ )

[
f (τ )∗(n−1)

∗ F (τ )
]}

≥ 0

for τ > 0, where

R =
1

pj
[
f (τ )∗(j−1)

∗ F (τ )
]
+ · · · + pn−1

[
f (τ )∗(n−2)

∗ F (τ )
]
+ q

[
f (τ )∗(n−1)

∗ F (τ )
]

and

l ∈ {min (j, n − j) , . . . , n − 1} . □

Finally, we also can show that the coarser statistic, the covari-
ance, between any two, of the subprocesses, is always positive.

Lemma 11. For a standard n-process serial model, again assuming
a single processing order,

Cov
(
Tj,Tl

)
=

n∑
i=k

n∑
z=k

n∑
k=1

miwzVar(Tk), 1 ≤ j, l ≤ n, and l ̸=j.

Here Tj =
∑n

i=1 miSi, where mi is the probability for Tj = Si and∑n
i=1 mi = 1. Tl =

∑n
z=1 wzSz , where wz is the probability for

Tl = Sz and
∑n

z=1 wz = 1.

Proof.

Cov
(
Tj,Tl

)
= Cov

(
n∑

i=1

miSi,

n∑
z=1

wzSz

)

= Cov

(
n∑

i=1

mi

i∑
k=1

Tk,
n∑

z=1

wz

z∑
k=1

Tk

)

= Cov

(
n∑

i=1

i∑
k=1

miTk,
n∑

z=1

z∑
k=1

wzTk

)

=

n∑
i=k

n∑
z=k

n∑
k=1

miwzVar(Tk). □

In standard multiple-process parallel models, by definition,
the TCT for a processor is the processing time for that chan-
nel. That implies that the TCTs for processors T1, . . . ,Tn are
identically and independently distributed. Similarly, as for the
standard n-process serial models, we state the behavior of (2)
for the standard n-process parallel models, which we know from
the prior knowledge, to possess no dependence. We include the
statement of these tautologies to contrast the distinct predictions
of the standard serial vs. the standard parallel models.

Theorem 12. For a standard n-process parallel model, P(Tj+1 ≤

τ , . . . ,Tn ≤ τ |T1 ≤ τ , . . . ,Tj ≤ τ )− P
(
Tj+1 ≤ τ , . . . ,Tn ≤ τ

)
=

0 for τ > 0.

Proof. For a standard n-process parallel model,

P(Tj+1 ≤ τ , . . . ,Tn ≤ τ |T1 ≤ τ , . . . ,Tj ≤ τ )
− P

(
Tj+1 ≤ τ , . . . ,Tn ≤ τ

)
=

P(Tj+1 ≤ τ , . . . ,Tn ≤ τ ,T1 ≤ τ , . . . ,Tj ≤ τ )
P
(
T1 ≤ τ , . . . ,Tj ≤ τ

)
− P

(
Tj+1 ≤ τ , . . . ,Tn ≤ τ

)
=

P
(
Tj+1 ≤ τ , . . . ,Tn ≤ τ

)
P
(
T1 ≤ τ , . . . ,Tj ≤ τ

)
P
(
T1 ≤ τ , . . . ,Tj ≤ τ

)
− P

(
Tj+1 ≤ τ , . . . ,Tn ≤ τ

)
= 0. □

And, of course, the covariance is destined to be 0 as well.

Lemma 13. For a standard n-process parallel model,

Cov
(
Tj,Tl

)
= 0,

where 1 ≤ j, l ≤ n, and l ̸= j.

Proof. It is apparent. □

Our investigation of TCTs for general n shows that dependence
of these in the case of standard serial models can be either pos-
itive or nonpositive. The computations of special cases strongly
suggest that positive dependencies are much easier to come by,
perhaps because of our earlier expressed intuitions in the section
for the standard two-process models.

Furthermore, the above derivations suggest that the behavior
of standard serial and standard parallel models differ substan-
tively. Function (2) = 0 looks difficult for a distribution for serial
class of models to satisfy for all τ > 0. However, it is a functional
equation that appears to be quite challenging to solve. On the
other hand, the case for a single processing order is concrete and
clear: Function (2) has to be 0 for a standard parallel model yet
cannot be for the standard serial model with a single order. The
strategic issue of model mimicry will be revisited in a subsequent
section.

3.2. Dependence of intercompletion times, general n

We now proceed to investigate the general statistic associated
with the actual processing times of standard serial models, that
is, the ICTs. Without loss of generalization, we can assume that
z1 ≤ z2 ≤ · · · ≤ zn. Recall that in standard n-process serial
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models, the ICTs are independent. Therefore, we only investigate
the dependence of ICTs for standard n-process parallel models.

The standard n-process parallel model can be decomposed into
n stages (Fig. 1(b) can be viewed as a standard n-process parallel
model). We have the ICTs for the standard n-process parallel
models:

T1 = T1 = z1,
T2 = T2 − T1 = z2 − z1,
. . . ,

Tn = Tn − Tn−1 = zn − zn−1.

We investigate the behavior of the survival function of the
canonical sum of ICTs Tj+1 + · · · + Tn′ , 0 < j + 1 ≤ n′

≤ n, condi-
tional on the completion of the earlier stages:
P
(
Tj+1 + · · · + Tn′ > t|zn′ > zj

)
. Without loss of generality, we

assume that processor 1 terminates first, processor 2 terminates
second, . . . , and processor n terminates in the last. Lemma 14
shows that the ICTs of standard parallel models tend to increase
as a function of the previous ICTs in a strong distributional sense
if the hazard function is constant or decreasing.

Lemma 14. For a standard n-process parallel model, if the hazard
function h is non-increasing, then P

(
Tj+1 + · · · + Tn′ > t|zn′ > zj

)
is non-decreasing as zj is increased.

Proof. We have

P
(
Tj+1 + · · · + Tn′ > t|zn′ > zj

)
= P

(
T1 + · · · + Tj + Tj+1 + · · · + Tn′ > t

+ T1 + · · · + Tj|zn′ > zj
)

= P
(
zn′ > t + zj|zn′ > zj

)
=

S(zj + t)
S(zj)

.

To examine the behavior of this function as zj changes, one can
take the derivative

d
dzj

S
(
zj + t

)
S
(
zj
) =

−S
(
zj
)
f
(
zj + t

)
+ S

(
zj + t

)
f
(
zj
)

S2
(
zj
)

=
S
(
zj
)
S
(
zj + t

)
S2
(
zj
) [

f
(
zj
)

S
(
zj
) −

f
(
zj + t

)
S
(
zj + t

)]

=
S
(
zj
)
S
(
zj + t

)
S2
(
zj
) [

h(zj) − h(zj + t)
]
.

If the hazard function is non-increasing, then d
dzj

S(zj+t)
S(zj)

≥ 0.

Consequently, P
(
Tj+1 + · · · + Tn′ > t|zn′ > zj

)
is non-decreasing

as zj is increased. □

Thus, happily we again find that, as for n = 2, a constant or
decreasing hazard function forces non-decreasing sums of ICTs.

Next, as before with n = 2, we move on to deliberate on what
characterizes the successive ICTs for standard parallel models in
the general case of arbitrary n. We can write the survival func-
tions for the n-process parallel models at each stage conditioned
on the completion of the earlier stage(s) in Table 1:

Let us denote the ratio of the hazard functions

α
(
zj−1 + t, zj + t

)
=

h
(
zj + t

)
h
(
zj−1 + t

) .
If the survival function from stage j to stage j + 1 for every j is
increasing, this trend is then consistent with the empirical finding
in free recall tasks that the time interval between two successive

Table 1
Survival functions for the standard n-process parallel models at each stage.
Stage Survival function

Stage 1 Sn(t)

Stage 2
[

S(z1+t)
S(z1)

]n−1

Stage 3
[

S(z2+t)
S(z2)

]n−2

, . . . , , . . . ,

Stage n S(zn−1+t)
S(zn−1)

responses is increasing as stage number is increasing. Theorem 15
provides under what exact condition the survival function keeps
increasing from stage j to stage j + 1. A generalized form of the re-
sult for n = 2 again finds that the above ratio of hazard functions
controls the behavior of the sequence of ICTs. Corollary 16 states
that standard n-process parallel models with concave or linear
H(t) result in the increasing survival functions across stages.

Theorem 15. For a standard n-process parallel model, the survivor
function from the jth stage to the (j + 1)th stage is increasing if
α
(
zj−1 + t, zj + t

)
<

n−j+1
n−j and is non-increasing otherwise.

Proof. Consider stage j vs. stage j + 1:[
S
(
t + zj−1

)
S
(
zj−1

) ]n−j+1

−

[
S
(
t + zj

)
S
(
zj
) ]n−j

=
exp

[
−(n − j + 1)H(t + zj−1)

]
exp

[
−(n − j + 1)H(zj−1)

] −
exp

[
−(n − j)H(t + zj)

]
exp

[
−(n − j)H(zj)

] .

The sign of the above equation is the same as

− (n − j + 1)H
(
t + zj−1

)
− (n − j)H

(
zj
)
+ (n − j)H

(
t + zj

)
+ (n − j + 1)H

(
zj−1

)
, (7)

which is equivalent to

− (n − j + 1)
∫ t

0
h
(
zj−1 + t

)
dt + (n − j)

∫ t

0
h
(
zj + t

)
dt

=

∫ t

0
− (n − j + 1) h

(
zj−1 + t

)
+ (n − j) α

(
zj−1 + t, zj + t

)
× h

(
zj−1 + t

)
dt

=

∫ t

0
h
(
zj−1 + t

) [
− (n − j + 1) + (n − j) α

(
zj−1 + t, zj + t

)]
dt

⎧⎪⎨⎪⎩
≥ 0, if α

(
zj−1 + t, zj + t

)
≥

n − j + 1
n − j

< 0, if α
(
zj−1 + t, zj + t

)
<

n − j + 1
n − j

. □
(8)

Corollary 16. For a standard n-process parallel model, (i) if the
cumulative hazard function H(t) is concave or linear, then[
S
(
t + zj−1

)
S
(
zj−1

) ]n−j+1

−

[
S
(
t + zj

)
S
(
zj
) ]n−j

< 0;

(ii) if H(t) is convex, then the sign of
[
S(t+zj−1)
S(zj−1)

]n−j+1
−

[
S(t+zj)
S(zj)

]n−j

is uncertain.

Proof. (i) If the cumulative hazard function H(t) is concave or
linear, then the hazard function h(t) is a decreasing or con-
stant. Consequently, α

(
zj−1 + t, zj + t

)
< 1 or = 1. According to
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Fig. 7. Plots of function (9) for (a) k = 2 and (b) k = 4. Note that t and z1 have the arbitrary and the same unit.

Theorem 15,
[
S(t+zj−1)
S(zj−1)

]n−j+1
−

[
S(t+zj)
S(zj)

]n−j
< 0 is obtained. (ii)

If H(t) is convex, the hazard function h(t) is increasing. Then
we have α

(
zj−1 + t, zj + t

)
=

h(zj+t)
h(zj−1+t)

> 1. It is uncertain if

α
(
zj−1 + t, zj + t

)
≥

n−j+1
n−j or α

(
zj−1 + t, zj + t

)
<

n−j+1
n−j . So, the

sign of
[
S(t+zj−1)
S(zj−1)

]n−j+1
−

[
S(t+zj)
S(zj)

]n−j
is uncertain. □

Here we construct examples to further illustrate the behavior

of
[
S(t+zj−1)
S(zj−1)

]n−j+1
−

[
S(t+zj)
S(zj)

]n−j
. As before, we learn that standard

parallel models are characterized by a vital inclination toward
ever-increasing intervals between successive completions, that is
α
(
zj−1 + t, zj + t

)
≥

n−j+1
n−j . But that tendency can be overrid-

den by extremely increasing hazard functions. These findings are
illustrated in the subsequent examples and Figs. 7–9.

To construct examples for n > 2, we assume that there are
three processors in standard parallel models, whose processing
times are i.i.d and labeled as:

z1, z2, z3.

According to Theorem 15, the survival function from stage j to
stage j + 1 is increasing if α

(
zj−1 + t, zj + t

)
<

n−j+1
n−j . For n = 3,

that is

α (t, z1 + t) =
h (z1 + t)

h(t)
<

3 − 1 + 1
3 − 1

=
3
2
, if j = 1,

α (t + z1, t + z2) =
h (z2 + t)
h(z1 + t)

<
3 − 2 + 1
3 − 2

= 2, if j = 2.

For j = 1 and 2, (7) is equivalent to

−3H (t) − 2H (z1) + 2H (t + z1) , (9)

and

−2H (t + z1) − H (z2) + H (t + z2) + 2H (z1) , (10)

respectively.
Weibull distributions. Let

z1, z2, z3 ∼ Weibull (k, u) ,

where k, u > 0. The corresponding cumulative hazard function
and the hazard function are

H (t) = u (ut)k−1 t

and

h (t) = uk (ut)k−1 .

If k = 1, then Weibull distributions reduce to exponential
distributions:

z1, z2, z3 ∼ Exp (u) .

The cumulative hazard function for the exponential distribution
is linear:

H (t) = ut.

The hazard function is a constant: h (t) = u. It is apparent

α (t, z1 + t) =
h (z1 + t)

h(t)
= 1 <

3
2
, if j = 1,

α (t + z1, t + z2) =
h (z2 + t)
h(z1 + t)

= 1 < 2, if j = 2.

Therefore, the survival function for exponentially distributed pro-
cessors is increasing from the first stage to the second stage to the
third stage, as expected.

If k < 1, then the cumulative hazard function is concave
and the hazard function is increasing. Hence, the survival is also
increasing from stage 1 to stage 2 to stage 3 as

α (t, z1 + t) =
h (z1 + t)

h(t)
< 1 <

3
2
, if j = 1,

α (t + z1, t + z2) =
h (z2 + t)
h(z1 + t)

< 1 < 2, if j = 2.

If k > 1, then the cumulative hazard function is convex.
We ran simulations to investigate the dynamics of the survival
function from stage 1 to stage 2 to stage 3. We present 3d plots
(Fig. 7) of (9) by varying the values of t and z1 from 0 to 10 and
fixing u = 1. Fig. 7(a) fixes k = 2 and Fig. 7(b) fixes k = 4. We
also present 3d plots (Fig. 8) of (10) by varying the values of t
and z2 from 0 to 10 and fixing z1 = 1 and u = 1. Fig. 8(a) fixes
k = 2 and Fig. 8(b) fixes k = 4. We observe both (9) and (10)
can be negative and nonnegative. We conclude that for k > 1,
the survival function from stage 1 to stage 2 to stage 3 is neither
always increasing nor always non-increasing.

Uniform distributions. Let

z1, z2, z3 ∼ Uniform (0, v) ,

where v > 0. The corresponding cumulative hazard function
(0 ≤ t ≤ v) is convex:

H (t) = −ln(v − t) + lnv

and the hazard function is

h (t) =
1

v − t
.
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Fig. 8. Plots of function (10) for (a) k = 2 and (b) k = 4. Note that t and z2 have the arbitrary and the same unit.

We have

α (t, z1 + t) =
h (z1 + t)

h(t)
=

v − t
v − z1 − t

≥ 1, if j = 1,

α (t + z1, t + z2) =
h (z2 + t)
h(z1 + t)

=
v − z1 − t
v − z2 − t

≥ 1, if j = 2.

We ran simulations to investigate the dynamics of the survival
from stage 1 to stage 2 to stage 3.

We present a 3d plot (Fig. 9(a)) of function (9) by varying the
values of t and z1 from 0 to 1 and fixing v = 2. We also present a
3d plot (Fig. 9(b)) of function (10) by varying the values of t and
z2 from 0 to 1 and fixing z1 = .5 and v = 2. We observe both
(9) and (10) can be negative and nonnegative. We conclude that
for uniformly distributed processing times, the survival function
from stage 1 to stage 2 to stage 3 is neither always increasing nor
always non-increasing.

Analogously to the situation with TCTs, we find that in general
ICTs for standard parallel models do not tend to follow the behav-
ior of those for standard serial models which are i.i.d. However,
we will proceed to discuss the pivotal issue of mimicry directly.

3.3. Can standard serial and standard parallel models ever mimic
one another?

Our very first papers on serial vs. parallel processing uncov-
ered serious issues of mathematical equivalence of these classes
in popular experimental paradigms (e.g., Townsend, 1969, 1971,
1972). Later work expanded the classes of distributions subject
to mimicry problems (e.g., Townsend, 1976a) as well as pointing
to experimental situations and model depictions that might be
capable of distinguishing them (e.g., Townsend, 1976b). Yet, those
results do not answer the question of model mimicry within the
special constraints of standard serial vs. standard parallel models.

In this realm, the mimicry concern devolves into the inquiry of
whether a standard serial model and its assumption of i.i.d ICTs
can simultaneously be not only parallel (i.e., equivalent to some
arbitrary parallel model) but also produce i.i.d TCTs. The opposite
way to pose the question is whether a standard parallel model
can be equivalent not only to some arbitrary serial model but
to one with i.i.d ICTs. But, observe that this question is actually
symmetric because it simply asks whether there is an intersection
of the two classes of models that includes the conjunction of i.i.d
ICTs and i.i.d TCTs.

We first inspect function (3) in this paper or its special case for
n = 2 in Zhang et al. (2018) and view either one as a functional
equation when the potential inequality is set identically equal
to 0. Subjectively, and as intimated earlier, it does not appear

that any continuous family of probability densities can satisfy this
equation for all times τ . However, we currently have no proof of
that.

Hence, we move on to Eq. (8) and check if α
(
zj−1 + t, zj + t

)
≡

n−j+1
n−j for all the values of zj−1 > 0, zj > 0, t > 0. We recount

the definition of α here that α
(
zj−1 + t, zj + t

)
=

h(zj+t)
h(zj−1+t)

. If

α
(
zj−1 + t, zj + t

)
≡

n−j+1
n−j holds, it indicates standard parallel

models can produce i.i.d ICTs, which is a fundamental property of
standard serial models. A straightforward proof that no standard
parallel model can yield this identity follows.

Lemma 17. For a standard n-process parallel model,
α
(
zj−1 + t, zj + t

)
≡

n−j+1
n−j cannot hold for all the values of zj−1 >

0, zj > 0, t > 0.

Proof. Assuming the above equation holds, then we shall have

h
(
zj + t + (zj − zj−1)

)
h
(
zj−1 + t + (zj − zj−1)

) =
n − j + 1
n − j

h
(
2zj + t − zj−1

)
h
(
zj + t

) =
n − j + 1
n − j

h
(
2zj + t − zj−1

)
n−j+1
n−j h

(
zj−1 + t

) =
n − j + 1
n − j

h
(
2zj + t − zj−1

)
h
(
zj−1 + t

) =

(
n − j + 1
n − j

)2

h
(
(2zj − zj−1) + t

)
h
(
zj−1 + t

) =

(
n − j + 1
n − j

)2

Contradiction! So α
(
zj−1 + t, zj + t

)
≡

n−j+1
n−j cannot hold for all

the values of zj−1 > 0, zj > 0, t > 0. □

Thus, we discern that there exist no standard parallel models
that can produce i.i.d ICTs. Equivalently, the intersection of the
standard serial and standard parallel models is the empty set.

Another similar but perhaps even more intuitive proof of ‘‘no
intersection of model classes’’ is the following. Let us observe
Lemma 14, if standard parallel models can mimic standard serial
models, P

(
Tj+1 + · · · + Tn′ > t|zn′ > zj

)
is invariant across values

of zj and so must have 0 as the only acceptable value of its deriva-
tive with respect to zj. That is S(zj)S(zj+t)

S2(zj)

[
h(zj) − h(zj + t)

]
= 0.

Now, the only continuous hazard function obeying this condition
belongs to the exponential family. However, we already know
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Fig. 9. Plots of (a) function (9) and (b) function (10) for uniformly distributed processors. Note that t , z1 , and z2 have the arbitrary and the same unit.

that standard parallel models with exponential distributions pos-
sess increasing ICTs (recall McGill’s model in the parallel model’s
representation) rather than the required independently and iden-
tically distributed ones of standard serial models. Hence, once
again we find that there is only a null intersection of standard
serial and standard parallel models.

We thus find an agreeable consequence of this result: De-
spite the thorny challenge of model mimicry even between the
diametrically opposed types of mental architecture, serial vs.
parallel, we discover that the prototypical standard serial and
standard parallel models do not mimic one another. Therefore,
it makes theoretical and empirical sense to employ such critical
statistics as ICT and TCT to test between them in psychological
environments.

3.4. Implementation of the present theoretical results in the labora-
tory

It is certainly true that both TCTs as well as ICTs yield impor-
tant information about underlying information processing sys-
tems. Nevertheless, when we move to consider how the present
findings might be utilized to investigate psychological phenom-
ena, we discover a curious asymmetry. As already observed, ICTs
have been studied, though not voluminously, in the realm of free
recall. On the other hand, TCTs have not. Apparently, no one
has thought of testing the stochastic independence of TCTs in
something like a free recall design. It is certainly possible to do
and should, in fact, be done.

Actually, in many experimental milieus where processing is-
sues such as architecture, stopping rule, capacity and so on, have
been studied, ICTs and TCTs are fairly invisible. But this could
change as researchers begin to explore more complex cognitive
realms with tools like SFT.

It is also fact that stochastic independence is often more
readily assessed when response frequencies, rather than RTs, are
the primary dependent, observable variable. As we continue to
unify approaches which have previously been dominated by RTs,
such as SFT (e.g., Townsend & Nozawa, 1995) with ones more
attached to response frequencies, such as General Recognition
Theory (Ashby & Townsend, 1986), our theoretical and statistical
power is sure to grow.

Now let us turn to a bit more detailed account of how, at least,
our ICT results might relate to the classical free recall paradigm.
Therefore, we consider an experimental paradigm in which the
subjects recall words from a previously learned list. In the event
that the more probable type of standard parallel processing is

present we expect a positive association between the magnitude
of ICTs for a word and the position of its recall.

Standard serial models cannot interpret this result as we have
discussed earlier. For the recall experiment that we propose cur-
rently, standard parallel models can readily account for these
data. The experimenter records the RTs of each recalled word.
Each RT is counted from the moment the test phase begins to
the moment a word is reported. Apparently, each RT is a TCT.
Let us label them as T1, . . . ,Tn. Recall that the TCTs are i.i.d in
a standard parallel model. Let us assume each TCT follows the
Weibull distribution:

f
(
Tj
)

= ku(uTj)k−1exp
[
−
(
uTj
)k]

,

where j ∈ {1, . . . , n}. The likelihood function, in this case identical
to the joint density function, for a standard parallel model can be
written as

L = f (T1) f (T2) · · · f (Tn) .

One can use maximum likelihood method to estimate the param-
eters k and u for the Weibull distribution. We expect that the
estimated value of k is not greater than 1, which is consistent
with the prediction of Theorem 15 and Corollary 16.

4. Summary and conclusions

With the purpose of rendering this final section independently
readable, we drop our previous acronyms.

Our work here differentiates and characterizes the standard
multiple-process serial models and the standard multiple-process
parallel models by investigating the behavior of (conditional)
distributions of the total completion times and survival functions
of intercompletion times without assuming any particular forms
for the distributions of processing times. We implement this pro-
gram through mathematical proofs and computational methods.
Although the proofs are more complex than with n fixed at n =

2, it pleasantly turned out that the major conclusions are in line
with the simpler cases.

Thus, we found that for the standard multiple-process serial
models and allowing multiple processing orders, positive depen-
dence between the total completion times may or may not hold if
no specific distributional functions are imposed on the processing
times. In other words, the conditional probability that processors
j + 1, . . ., n are completed before some time τ given processors
1, . . ., j have already been completed by this time can be greater
or not greater than the unconditional (i.e., marginal) probability
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that processors j+1, . . ., n are completed by time τ . Interestingly,
the prediction for fixed order serial processing reveals that, unlike
the situation with mixtures of orders, standard serial models
with a fixed processing order are associated with a positive
dependence (e.g., covariance > 0) among total completion times.

By contrast, and per definition, for the standard multiple-
process parallel models, the total completion times are indepen-
dent in the sense that the conditional probability that processors
j + 1, . . ., n are completed before some time τ given processors
1, . . ., j have already been completed by this time is equal to
the unconditional probability that processors j + 1, . . ., n are
completed by time τ . According to the different nature of pro-
cess dependence, one can distinguish a standard multiple-process
serial model from a standard multiple-process parallel model.

Moving on to exploration of what happens in standard parallel
models with regard to their intercompletion times, we learn that
if the hazard function for the processing times is non-increasing,
the later stages tend to be successively longer as a function of
the magnitude of the earlier intercompletion time, just as when
n = 2. Moreover, we discover that in standard multiple-process
parallel models, the survival functions of the intercompletion
times for the later stages (from stage j + 1 to stage n′) conditional
on the completion of all the earlier stages is non-decreasing as the
processing time for the jth order of processor is increasing if the
hazard function of processing times is non-increasing. Recall that
j in the term ‘‘jth order of processor’’ represents the position in
the processing order.

We further find that the survival function of intercompletion
time(s) from stage j to stage j + 1 is increasing when the ratio
of hazard functions is smaller than n−j+1

n−j . For all such parallel
models the empirical finding in free recall tasks that the in-
tercompletion time grows stochastically with the growth of the
number of recalled words is accommodated. Finally, if the cumu-
lative hazard function is concave or linear, the survival function
from stage j to stage j + 1 is increasing.

A limitation of the above theoretical findings is the i.i.d axiom.
On the one hand, there is no reason to suspect that as long
as a single family of distributions say general gamma, Weibull,
Wald, ex-Gaussian and so on, is assumed, that item or position
differences should lead to qualitatively different distribution pa-
rameters. However, it would be nice to actually demonstrate that
fact, as Vorberg and Ulrich (1987) did in the case of the non-i.i.d
exponential family. We look forward to a much more rigorous and
precise treatment of free recall and related data with the current
theory and methodology.

The greatest need appears to be more relevant experimenta-
tion. Paradigms associated with free recall as in Bousfield and
Sedgewick (e.g., 1944) or Rohrer and Wixted (1994) are an ob-
viously territory ripe for more empirical effort. And, as observed
above, there appears to be no obstacle to the analysis of the
dependencies of total completion time. Finally, we suspect that
there exist other arenas where strategic statistics like intercom-
pletion times and total completion times can prove theoretically
beneficial.
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